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Abstract

In this and a companion paper [7] we investigate the
topology of the space of possible pushing behaviour for
2.5D objects of arbitrary outline. We do this by study-
ing the Push-Stability Diagram (PSD) derived by Brost,
which is a generalisation of a result of Mason’s. In
this paper, we show how to derive a PSD for arbitrar-
ily curved objects, and investigate how changes in the
friction between pushing and pushed objects affect the
topology of the PSD for any given object. This leads
us to include an extra axis on the PSD, resulting in an
Extended Push-Stability Diagram. This representation
makes explicit the topological changes in the operation
space of possible reorientation behaviours for any given
2.5D object, leading to the possibility of using it in the
design of feeders.

1 Introduction

In recent years a number of researchers have studied the
sliding behaviour of objects. Much of this work has been
precipitated by Mason’s Ph.D. [10] (see also [12]), where
he derived a simple rule to determine the sense of re-
orientation of an object being pushed on a horizontal
surface that is independent of the contact pressure dis-
tribution. Peshkin [15] considered all possible contact
pressure distributions in order to derive conservative es-
timates on the rate of reorientation of an object. This, in
conjunction with Mason’s results, allowed him to deduce
sequences of fences to be suspended over a conveyor belt
so that objects fed at one end would leave at the other in
a known orientation to within an interval of uncertainty.
This interval of uncertainty was removed in [3] by curv-
ing the ends of the fences appropriately. Brost [4], [5] em-
ployed Mason’s results in order to generate robust grasp-
ing strategies for polygonal objects. Goldberg [8] built
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on Brost’s analysis and developed an algorithm that can
generate a sequence of squeezing actions that can reori-
ent a polygon from an initially unknown orientation to
a known one (with a 180° ambiguity) by exploiting a
parallel jaw gripper with one jaw that is free to slide lat-
erally. Rao and Goldberg [16] extended this algorithm
to apply to parts containing algebraic curves. Recently
[17] Goldberg’s algorithm has also been adapted to syn-
thesise orienting strategies for polygonai objects on con-
veyor belts fitted with the curved fences reported in [3].
Part of Brost’s [4], [5] analysis included the derivation of
the Push-Stability Diagram (PSD), which was exploited
in [6] to derive optimal length plans to orient a polygo-
nal object for a given value of friction between pushing
and pushed objects. In what follows we show how to
extend the PSD to arbitrarily shaped objects and how
the coefficient of friction affects the topology of a PSD
thereby influencing the length of pushing plans.

2 Background

2.1 Mason’s Rule

The result of Mason's that precipitated this work we
shall just refer to as Mason’s rule. It presupposes a
quasi-static model of manipulation where Coulomb’s law
of dry friction applies. A geometric representation of
Coulomb friction is the friction cone [13]. If p is the
coefficient of friction, then the friction cone at a point
contact is formed by the set of vectors that make an
angle # with the normal at the point of contact, where
tan@ = p. Since we will be considering essentially pla-
nar tasks, the friction cone will be represented by its
projection onto a plane parallel to the surface of sliding.

Mason’s rule can be stated as follows: Let R; and
R, be the left and right rays delimiting the edges of
the friction cone, and 2, the ray denoting the direetion
of pushing. These rays vote relative to the CoM to
determine which way the object will rotate; that is to
say, if two or more of these rays lie to the left of the
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Figure 1: Labelling of a polygon and definition of the
angles of orientation, ¢, and pushing, 4.

line joining the point of contact to the COM, then the
object will rotate clockwise, if two or more of these rays
lie to the right of this line, then the object will rotate
anticlockwise. If one ray lies on the line from the point of
contact to the CoM, and the other two are distributed
one on each side of this line, pure translation occurs.

2.2 Constructing the PSD for Polygons

Brost’s push-stability diagram [4], [5] represents, for a
given value of the coefficient of friction between a fence
and object, the outcome of a particular pushing opera-
tion given the initial orientation of the object, and the
direction of pushing?®. In essence it evaluates Mason’s
rule for all possible object orientations and pushing di-
rections. In order to represent this graphically Brost
constructs what he calls the operation space for the task
by plotting pushing direction against object orientation.

In addition to Mason’s assumption of quasi-static me-
chanics Brost assumes that the length of the pushing
fence can be considered to be infinitely long. This sim-
plifies the analysis since the behaviour of objects that
possess concavities becomes equivalent to that of their
convex hulls.

Figure 1 illustrates the labelling of a polygon to be
pushed, and the senses in which the angle of pushing, d,
and angle of orientation, ¢, are measured. The edges of
the polygon are numbered e1, es, ...e, (where n is the
number of edges of the object’s convex hull) in an anti-
clockwise direction starting from the longest edge. The
vertices are numbered in a similar manner with vertex
v; on the anticlockwise end of edge e;. In addition, each

2We ought to mention that the Edge Stability Map of Mani
and Wilsons’ [9], which was derived independently, is a version of
the PSD and can be used to give the same information.

Figure 2: Geometry of a vertex in contact with a fence.

edge e; has an edge-angle, £;, which is the angle mea-
sured clockwise from ey to e;. Note that ¢ is defined
with respect to the edge ey of the polygon, and that § is
measured anticlockwise relative to the plane of the fence.

Brost’s algorithm for constructing a PSD for a polygon
is as follows. First the operation space is partitioned by
the orientations at which an edge of the object’s convex
hull comes into contact with the pushing fence (these are
just the values of the £;). In between these orientations
lie the ranges of orientations that some vertex is in con-
tact with the fence. The result is further partitioned by
the orientations at which the friction cone rays change
their vote. If we imagine the object pivoting at the ver-
tex of contact this occurs at the orientations when a fric-
tion cone ray lies along the line from the vertex to the
CoM. As can be seen from Figure 2, this is a function
of the interior angles of the object. Lastly the condition
under which the pushing ray changes its vote is deter-
mined for each vertex contact configuration. This again
is a function of the interior angles of the object. For the
contact configuration shown in Figure 2 this condition
isd—-dé=48.

The resulting partitioning is shown in Figure 3. The

sense of the votes for each region is tallied resulting in
the PSD shown in Figure 4.

The usefulness of the PSD stems from the fact that it
encodes the “manipulation funnels” [11] or behavioural
equivalence classes that are present in an object pushing
task, that is to say that it makes explicit the range of ini-
tial conditions that will converge on the same outcome,
that of a particular stable resting state. Stable rest-
ing states occur along the lines that have anticlockwise
reorientation regions ‘below’ them, and clockwise reori-
entation regions ‘above’ them, since initial conditions on
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Figure 3: The partitioned operation space for reorienting Figure 4: The Push-Stability Diagram for a rectangular

a block by pushing.

either side of these lines converge on the same orien-
tation. Correspondingly these are known as convergent
boundaries. Divergent boundaries are those that have an
anticlockwise reorientation above them and a clockwise
reorientation region below.

3 Generalising the PSD

3.1 Objects of Arbitrary Outline

It is actually straightforward to generalise the PSD to
objects of arbitrary outline. For a curved object with
no vertices we can imagine traversing the object’s out-
line and constructing the tangent at each point on its
boundary. This represents the fence making contact at
that point. We can also construct the normal at each
point, and the friction cone rays would make angles of
+6 to it. Finally, if we construct a line from the point of
contact to the CoM we have defined the decision bound-
ary about which the rays involved in Mason’s rule must
vote. We will call this the vote transition boundary and
its orientation is measured with respect to the fence in
an anticlockwise sense by the angle 1. See for example
Figure 5. With this construction it is straightforward
to determine which reorientation sense the friction cone
rays vote for by comparing the values of 90° + 8 (for R;)
and 90° -4 (for R,) to 9. In addition, the angle v is the
critical value at which the pushing direction changes its
vote.

For objects that include vertices in their perimeter
we can imagine traversing the curve until a vertex is
reached, and then the tangent pivoting through a range

block (8 < ). Arrows indicate the sense of reorienta-
tion.

-

CoM @

vote transition

boundary

tangent

Figure 5: Reorientation sense voting for a curved object.

of orientations until it glances the next section of curve.
We sample this range of orientations as the pivoting pro-
ceeds, and, as for curved sections of the perimeter, at
each point determine (i) how the friction cone rays vote
relative to the vote tramsition boundary, and (i) the
critical direction for the pushing ray.

For objects that include concavities we first find their
convex hull using the algorithm described in [20], and
then proceed as above.

At this point it will be useful to introduce what we
will call the wvote transition curve: If we plot on an ob-

3This algorithm, which uses a variation on the Hough transform
called a pedal curve, implicitly delivers an object’s radius function.
(The radius function can be though of as the locus of the COM
as the object is rolled over the fence and appears as the basis of
a number of parts orienting strategies [10], [8], [18], [17].) It is
also straightforward with this technique to recover the diameter
function used in {8], [16]. See [19].
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Figure 6: Decision boundaries on the PSD of a rounded
rectangle.

ject’s operation space the critical pushing directions that
correspond to the pushing ray going through the CoM
for each orientation of the object, i.e. we plot 1 against
¢, we get a curve which is the locus of all the vote tran-
sition boundary directions. This is the vote transition
curve. Figure 6 shows the vote partitioning of the oper-
ation space for the rounded rectangle of Figure 5. The
vote transition curve appears as the curvy zig-zag run-
ning vertically through the middle. To the right of this
curve the pushing ray votes for clockwise reorientation;
to the left, anticlockwise. The vote transition curve also
arises for polygonal objects, the difference being that for
polygons it is piecewise linear; compare Figure 6 with
Figure 3.

3.2 Variation in the Coeflicient of Fric-
tion

3.2.1 Polygons

Figure 4 shows the PSD for a rectangular block, with
0 < @3, where a and 3 are the angles between a line

joining a vertex with the COM and an edge of the block
as shown in Figure 2. Note that for this example G < «
and 84+ a = 90°. If we allow the friction cone half
angle to increase until it is just greater than 8 we get
the situation shown in Figure 7 where a change in the
topology of the PSD occurs. If we allow € to increase
further until # > « then another change in the topology
of the PSD occurs (Figure 8). Since these qualitative,
topological changes affect the feeding strategies that can
be synthesised from a PSD it is worth investigating why
they occur.
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Figure 7: The PSD for a rectangular block with 8 just
greater than 8. Arrows indicate the sense of reorienta-
tion.

Consider the situation shown in Figure 2. If we
imagine the block rotating anticlockwise about v; then
the condition for R; to change its vote is when ¢.; =
90° — B+ 6 = o + 8. But note that if ¢.; = a+ 8 = 90°
then R; is about to change the sense of its vote when
side ey4 is flat against the fence. So if & + 8 > 90° then
Ry can’t change the sense of its vote until the block has
rotated into the fence. Obviously this is physically inad-
missible. What this means is that with o + 6 > 90°, (or
equivalently 8 > 3, since for this example a + 8 = 90°),
IRy is ‘unable’ to change its vote, since the vote transition
boundary always stays on the same side of R;.

A similar situation occurs if we imagine the block piv-
oting clockwise about v;. In this case the critical value
of ¢.1 for which R, is about to change its vote is given
by: ¢e1 = 90° -3~ 80 = — 6. Now, if 8 > o, R, can-
not change its vote until ¢., is negative, i.e. the block
has rotated into the fence. Again this is physically in-
admissible, so if # > « then R, is unable to change its
vote.

From the parameterisation of Figure 4 we can also
trace what happens to the PSD as the friction cone half-
angle is allowed to increase. The v; contact interval
corresponds to orientations between 0° and 90° on the
PSD. Figure 4 shows that the horizontal segments of the
divergent boundary in this region correspond to orien-
tations of o + ¢ and a — 6. As 8 gets bigger we can
imagine these horizontal lines getting further apart until
a+ 6 =90° (or 6 = ). At this point the anticlockwise
turning region in the interval § =]90° + 6, 180°] has dis-
appeared. This corresponds to the situation where R;
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Figure 8: The PSD for a rectangular block with 8 > «.
Arrows indicate the sense of reorientation.

is no longer able to change its vote from clockwise to
anticlockwise. If § gets any larger part of the convergent
boundary corresponding to es being flat is ‘annihilated’.
Under these conditions, if the orientation of the block
is just greater than £, and a pushing direction in the
interval § =]90° + 3, 180°] is chosen, the block just rolls
clockwise ‘through’ edge e4 being flat gainst the fence,
i.e. thig interval no longer forms part of a convergent
boundary.

If 8 continues to increase then when 8 > « part of the
convergent boundary corresponding to e; being flat is
annihilated. This is the situation where R, is unable to
change its vote.

The reason why these ‘annihilations’ are symmetric
about § = 90° can be seen by considering the behaviour
of the object as it pivots about the vertices neighbouring
vy on the PSD, viz. vy and v4. In general these anni-
hilations will not be symmetric but dependent on the
interior angles of an object.

3.2.2 Curved Objects

Similar phenomena to that described above arise with
curved objects. If we imagine traversing the perimeter
of a curved object, just as before, the friction cone rays
cannot change their respective votes if they always re-
main on the same side of the vote transition boundary.
For R, this would mean that it was always to the ‘left’ of
the vote transition boundary, z.e. 90° + 0 > o, V¢é. For
R, this means always lying to the ‘right’ of the vote tran-
sition boundary, or 90° — 6 < ,V¢. These conditions
have a simple graphical representation on the PSD: We

Push stability diagram for a rounded rectangle
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Figure 9: PSD topology for a rounded rectangle with
‘high’ friction. Black shading denotes anticlockwise re-
orientation and grey clockwise.

can represent the right friction cone (rfc) ray on the PSD
as the vertical line 6,7, = 90° — ¢, and the left friction
cone (Ifc) ray as the line &7, = 90° + 6. (That is, d,. is
the pushing direction that coincides with the direction
of the right friction cone ray. Similarly for the left fric-
tion cone ray and d;s.). If the ray I never changes its
vote, then by definition d;¢, never crosses the vote tran-
sition curve; similarly for R, and é,f.. This situation is
illustrated in Figure 9.

If we reduce the friction cone half angle, 8, from the
situation shown in Figure 9 we can imagine the interval
d = [90° — 8, 90° + 0] getting thinner. Topological transi-
tions in the PSD occur whenever ;4. or 7. are tangent
to the vote transition curve on the PSD, since this corre-
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Figure 10: PSD topology for a rounded rectangle with
‘medium’ friction. Black shading denotes anticlockwise
reorientation and grey clockwise.

sponds with a situation where the relevant friction cone
ray passes through the CoM. This occurs at the object
orientation corresponding to the point of tangency. If
the friction is reduced any further this allows the possi-
bility of the relevant friction cone ray changing its vote.
This phenomenon can be observed in Figures 10 and 11.

3.2.3 Polygons Revisited

We can use the vote transition curve to perform a simi-
lar analysis of the polygonal case, starting with a ‘large’
8 and gradually reducing it. If we consider the rectan-
gular block of Figure 2, we see from Figure 8 that d;¢,
and d,f. would just touch the vote transition curve at
0 = § £ a. Also from Figure 8 we can see that this cor-
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Figure 11: PSD topology for a rounded rectangle with
‘low’ friction. Black shading denotes anticlockwise reori-
entation and grey clockwise.

responds to the situations where either e; or es is flat
against the fence. If we imagine e; flat against the fence
and a friction cone half-angle of § = «, then for the fric-
tion cone at vy, R, passes through the CoM, and for
the friction cone at vy, R; passes through the CoOM, i.e.
the critical point between being able to, and not being
able to, change the voting sense. Reducing the friction
further reveals a similar situation for edges e, and e4 flat
against the fence when 6 = 3. This is consistent with
our discussion in Section 3.2.1.

3.3 The Extended PSD

If we include a third axis to the PSD representing the
magnitude of the coefficient of friction about the nor-

2702



pif2

pid \

Friction Cone Half Angle (rads)

7 i

05l
0 T

pif2
pi 0 Orientation (rads)

Pushing Direction {rads)

Figure 12: The Extended Push-Stability Diagram for a
rounded rectangle showing the intersection of the vote
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mal to the fence, and extend the vote transition curve
to exist over this whole range, we get a diagram that en-
codes all the possible distinct topologies of the PSD for
a particular object for the whole range of possibilities of
frictional coefficients. We will call this representation the
Extended Push-Stability Diagram (EPSD). The EPSD
for a rounded rectangle is shown in Figure 12. Horizontal
slices across this diagram correspond to PSDs with par-
ticular friction coefficients. The turning points on the
intersection of the extended vote transition curve and
the friction cone planes occur at the values of friction
where a topological transition in the PSD occurs due to
a change in the value of the coefficient of friction. The
critical values of friction are a function of the curvature
of an object’s perimeter and can be calculated from a
differential geometry construction called the evolute [18].
This will be elaborated on in a companion paper [7].

4 Deriving PSDs for Objects of
Arbitrary Outline

The foregoing discussion allows us to deduce a simple
algorithm for constructing the PSD for arbitrary shaped
objects.

First plot the vote transition curve on the operation
space. To the left of this curve the pushing direction
votes anticlockwise, and to the right clockwise, so colour
to the left black (say), and to the right grey (say). Now
include the horizontal lines corresponding to 4,7, and

d15.. Where &, 5. crosses the vote transition curve draw
horizontal lines to the left and fill these bands with grey,
since for all these orientations both friction cone rays lie
to the right of the vote transition curve thus determining
the sense of the vote as clockwise. Where §;¢, crosses the
vote transition curve draw horizontal lines to the right
and colour these bands black, for similar reasons. The re-
sulting black regions represent anticlockwise orientation,
and the grey clockwise. (Compare Figures 6 and 11.)

5 Discussion

We have shown in this paper how variation in the coeffi-
cient of friction between the pushing and pushed objects
affects the topology of the Push-Stability Diagram. This
topology is also affected by the location of the COM [7].
This is easy to see since the vote transition curve is de-
fined with respect to the CoM. In addition, for certain
locations of the COM it is possible to lose extrema in
the vote transition curve, corresponding to a change in
the topologies possible in the PSD [18].

We previously derived an algorithm that takes a poly-
gon from an initially random orientation to a known fi-
nal orientation [6]. As it stands this algorithm is not
applicable to PSDs with curved decision boundaries. To
get round this we are considering representing PSDs as
bitmaps in MATLAB and shifting more than one copy rel-
ative to each other in order to deduce orienting plans for
arbitrarily shaped objects (cf. [9]).

Even if we are successful in deriving orienting plans
for arbitrarily shaped objects this is still only half of the
story: the position of the object remains unknown—after
the last push in a plan it could lie anywhere along the
fence. Mottaez and Goldberg [14] have proposed an it-
erative method to overcome this limitation to the degree
of accuracy required. Alternatively a feeding mechanism
that constrains two degrees of freedom could be used to
remove the uncertainty in a further degree of freedom
(¢f- [1], [2]). We intend to lock into this further in the
future.

6 Summary

In this paper we have re-examined the construction of
the Push-Stability Diagram, a graphical representation
of an object’s reorienting behaviour when pushed on a
horizontal surface. We have shown how to construct
this representation for objects of arbitrary outline, and
by including an axis that represents the magnitude of
the friction between the pushing and pushed objects,
have shown how the effects of friction influence the pos-
sible reorientation behaviour of an object when pushed.
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The fact that this variation in behaviour is made explicit
means that it can be taken into account and used as a
control parameter in the design of feeder mechanisms.
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